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ABSTRACT

This paper discusses the problem of delay-dependent asymptotic stability for interconnected switched
neutral-type systems with time-varying delays. By applying weighting-delay approach, introducing both
singular model transformation technique and Finsler’s lemma, and constructing an augmented
Lyapunov-Krasovskii functional combined with slack matrices, an improved delay-derivative-dependent
stability criterion is derived to guarantee the asymptotic stability of above systems. The obtained criterion is
formulated in terms of matrix inequalities, which can be efficiently solved via standard numerical software. Two
numerical examples are included to show that the proposed method is effective and can provide less
conservative results.
Keywords: Interconnected switched neutral-type systems, time-varying delays, weighting-delay approach,

singular model transformation, delay-derivative-dependent stability criterion.

1. Introduction
It is well known that a wide class of physical systems in power systems, chemical procedure control systems,
navigation systems, automobile speed change system, etc. may be appropriately described by the switched
model. Switched systems are a special class of hybrid dynamical systems, which consist of a family of
subsystems and a switching law specifying the switching between the subsystems. Recently, there has been
increasing interest in the stability problem of switched systems with time delay due to their significance both in
theory and applications. To the best of our knowledge, it seems that few people have studied the asymptotic
stability problem for continuous-time interconnected switched neutral-type systems with time-varying delays.
This has motivated our research.
In this paper, we will give preliminary knowledge for our main result. First of all, consider the following
interconnected switched neutral-type system with time-varying delays
r N
%)= " OA% O +A% t-d )+ C% t-d ©) + Y [Bix; 1)+ Bjx; (t—d @)} (1a)
j=1

k=1
j=i
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Zr:ak(t):l, x()=pt), te[-h, 0] (1b)
k=1

o () = 1, when the switched system is described by the kth mode (1c)
0, otherwise

where x; (t) e R"™ is the state vector of the ith subsystem, A, A, B, BX

i Bij s CKXare known constant matrices

with appropriate dimensions, i=12,---,N, k=12,---,r. The delay d(t)is a time-varying continuous function
satisfying 0<d(t)<h andd(t) < u.¢(t) isa given continuous vector-valued initial function.

The following notations will be used throughout this paper. The notation F >G (F >G) means that the

matrix F -G is positive definite (positive semi-definite) for two symmetric matrices F, G. |; is an identity

matrix of appropriate dimensions.

Assumption 1[1]: All the eigenvalues of matrices Cik , 1=1,2,---N , are inside the unit circle.

Lemma 1[2]: For any real vectors «;, x, and any matrix M > 0 with appropriate dimensions, it follows that
2ic) Ky < i M 7l + g Mic, (2)

Lemma 2[3]: For any symmetric positive definite matrix P and scalars A >0, & >1, the following inequality
holds

- IgﬁeT(s)Pe(s)ds <- jj e'(s)Pe(s)ds —%( jze(s)ds)T P(J.;e(s)ds) 3)

Lemma 3[4]: For any symmetric positive definite matrix Q and scalars 0<b, <b,, the following inequality
holds

1
2=b;

[ KOO0 Xt -b) - X(t-bQ [X(t-by) - X(t-by)] ()

Lemma 4(Finsler’s lemma)[5]: Consider a vector ¢ R", a symmetric positive definite matrix S e R™"

and a matrix D e R™", such that rank(D) < n . The following conditions are equivalent:

(i)¢TS¢ <0, V¢ suchthat D¢ =0, ¢ #0 (58)

(i) (D*)"SD* <0 (5)
2. Main Result

In the following theorem, an improved delay-derivative-dependent criterion for asymptotic stability of
interconnected switched neutral-type system (1) is proposed in terms of matrix inequalities.
Theorem 1: Under Assumption 1, the interconnected switched neutral-type system (1) is asymptotically stable
for i=1,2,---N and k=12, ---,r, if there exist positive definite matrices Jqy;, Jopis Jazi+ Jasi» Yii» Yois
Zysiv Zoiv Zagiv Zagir Zssiv Zesin Z77: By Qiv Ryy Wy ,Woi, Wy, Wy, Xli'XZilMijlmileijl Mij’ real matrices
Hiv Ji2iv Jusis Juain Josiv Joais Jaaiv Zigiv Zisiv Zaaiv Zisiv Zasio Za7is Zosiv Zosis Zasis Zasiv Zo7is Zasis Lasis
Zagiv Zaziy Zasiy Lasiv La7is Lsgis Lsyin Lgzir and scalars 0< p <1, 6; >1 such that the following conditions

hold

e



‘JJTZi J 22i J 23i J 24i >0 (6b)

Zi_ Z:i:;li 22:4i Z'%u Zgi Zysi Zagi Zazi |>0 (6¢)
Zlf’n Z%_SI Z§|_5| Zé_l|_5| ZST5| Z56| Z57|
Z]:|_6I Zgrel Z§I_6| ZA_1|_6| Z§|_6I Z(_5|_6| Z67|
Z17| Z27| Z37| Z47| ZS?l ZG?l Z77|
Xoi + (L= p)X4i =27 >0 (6d)
(D) D <0 (6e)
where
;L 0 0 ]
I 0 0 O
L 0O 0 0 O
D=L I, 0 0 0 (7a)
0 0 L 0O
0 00 I, O
_0 0 0 O li |

7b
T | Ty Mgy M3y Tay Mg Tag Ty (70)

1
ITy5=R; Aik+ (Aik)TRi = Xgi+ (L= ) Xgi—Z ggi - Wy + Woj +J3i+ Wi+ Yy +oN Zyy

ph
- K KT, akir 5k -
+Z{ Ri[BiM;(Bf)T+Bi M (Bi) IR + M i + M '} (7c)
=)
}¢i
=P -R; +(Aik)TQi+‘]12i+ph ZlZilHBi:Ri’Kik + Jgit pPhZys (7d)
1
Ty, =phzl4i+E[X2i + (1= )Xsi —Z 7] (7e)
5 = RiCik +PNZ15i, i = pZy6i Tz = dyai + 217 (71)
N ~ —
51 =Waj+ Yy + J g+ PNZ 50 —2Q+ ZQi [BiljS Mj; (Biljf )T + Bi}(M i (Bi}( )T]Qi (79)
i=1
}¢i
Myg= QiKik"' Jogi+PN Zygi, Tlpgi= phZ y; 'HZSi:QiCik+ph225i’ 6= Z 6, Tyzi = I s+ Z i (7h)
N L~
Magi= a3+ phZgg— (1= ) Wy + Vo) +Z(M itM) (71)

j=1
j=i



Mgyi=phZ gy, Mgsi=—(1-p)Hi+ ph Zggi, Tggi = phZggi, Tggi = Jgsi+Zg7 (71)

My =~ ;%[XZF*'(]-_ )Xy = Z7i] _%XZi = (1= pr)Woi +phZ 4y (7K)
M ysi=phZ 45, H46i:phz46i+%xzil My7i=Z g3 (71)
Mggi= phZ 55— (=) (Wai+Y5) Tl = PNZ 561, T1 575 = Z 59 (7m)
H66i:ph266i_%XZPHGﬁ:ZGﬁ7H77i:‘J44i - (5/;;1)X2i (7n)

Proof: Based on singular model transformation [6], system (1) can be written as
Xi (1) =y (t) (8a)

r _ N _
0=>"a O~ yi(®) + Cf'yi (t - d(1)) + Alx (1) + Afx (t—d ©) + > [Bfx; (1) +Bix; (t-d ()T} (8b)
k=1 j=1
j#

By means of the idea of [7] and [8], we use the following Lyapunov-Krasovskii functional to derive the stability

criterion
N
V() = ZI_Vli (1) + Vi (1) + V5 (£) + V5 (1) + V55 (1) +Vg5 (8) +V7; (1) + Vi (£) + Vg (1) + Vi (V)] 9)
i=1
where
T Tl i Of[R 0] x(®)
Vi) =[x (1) vy (] {O O} |:Ri Qi:| L’i (t)} (10a)
t T
V)= [, MW ()ds (10b)
Va®= [ KW x(s)0s (100)
t T
Vi) = [, YT EWsyi(5)ds (10d)
Vi =[x, (5)ds (10¢)
_t X; (s) ! Yi  Hi || x(s)
Va®=], [yi (s)} {HJ Yzj[yi (s)}“‘5 (1on
Va® =" [, 976 Xy (9)dsdo (109
Va®=[" [ 8y Xz i(s)sdo (10n)

Vai(0) = | ; | :7,,(1(9) e7(6, 5) Z,e,(6,5)dsd (10i)



X; (0)
¥ (0)

Vi = [ | % @-d()

J- [
0-p

(6¢).

PRVCLE

Jlli ‘J12i

T
12i J 22i

I ‘]é:_—si
Juai I

‘]l3i
J 23i
J 33i
Ja

J14i
Joai
Jai
Jaai

X (0)
&

x(0-d(®) |do
9
| RIRTOTE

where e, (9, s)=[x(8) y'(0) %' (6-d(0)) x (0- pd(8)) y{(0—-d(8)) X (8—h) y'(s)]" and matrix Z; is defined in

(10))

Taking the time derivative of V(t) along the trajectories of system (1) and noting that 0<d(t)<h

and d (t) < , it yields

N . . . . .
V(t) = D Vi (£) + Vi (£) + Vg (t) + Vg (8) + Vi (8) +Vei (£) +Vi (1) + Vi (1) + Vi (8) + Vi (1)]

i=1

where

Va® =2 ® (t)][

k

j=1
j=i

P R }
Q

yi(t)

D @K Oy () + Clyi (t—d (1))

=1

+Afxay+kaa d(t)
+Z[B.,xj(t)+B., X; (t—d(O)I}

Vi (1) < X7 (Wi (1) —(L— )X (t = d (@)W x; (t - d (1)
Vi (£) < X7 (W (1) = (L= o) X; (t—pd (£) W % (t— pdl (1))
Vi (1) < yT (O i (1) — (L= )y (t—d ©)W i (t—d (1)
V5i < xi (E)Wy; % (t)—xi (t—h) Wy; x;(t—h)

; X (t)
Vai(t) < {yi ®

Var 1) < 16, YO X i) - [

Vi (t) = pd (t)

t T T t
[ 26 OZai+ vl OZlyi(os + [

* .[tt—pd(t)2 [ yiT (t-d (t))zs7i+XiT(t —h)Zg;1yi(s)ds + _[t

T Yy H; |:Xi(t)
HTY, [ Yi()

Vir ) <yl Xy i) — - ) [

X; (t)
yi(t)
X (t—d(t))
X (t —pd (1))
yi(t—d(t))

L xi(t=h) |

t-pd(t)

|-

-d()

X (t=d(t)
yi(t-d(t)

YT (8) Xy yi(s)ds

i

ST Xzyi(o)ds - [

—pd(t)

Hi{&a—da»}
y; (t—d(t))

Yai

5 Yi (S) X2| Yi (S)dS

2% (t—d (1) Zg7i+% (t—pd (1)) Z47;1y; (5)dls

t-pd(t)

| Xx(t=h) |

% (t)
yi(t)
X (t-d())
( pd(t))
yi(t- d(t))

Y1 (S) Z77iYi (s)ds

(11)

(12a)

(12b)
(12¢)
(12d)

(12e)

(12f)

(129)

(12h)

(12i)



X (t) !

‘]lli ‘J12i ‘]l3i ‘J14i

. it) Ihi Joai Jos Joai %i(t)
Vigi) = | x(t-d()) T3 g 3 X (t—d(t))
t @ Ya Ja a ;
J.t,pd([)yi (S)dS Jl4i ‘]24i ‘]34i ‘]44i It—pd(t) Yi (S) S

Applying Lemma 1, we have

N N
Z;Z_;Zx (R BiX; (1)

N N
<D 2 D ORBIMy (B Rix; (1) +X] (M) (1]

i=1l j=1
j#i

N N
ZZXF OIRBIM; (BI) TRy + M 11 % (t)

i=1 j=1
j#i

N N
222y (OQBX; (1)

i=1 :l
N N
< 2 2 T OQBEM (B) Qi (0 +X] ()M (0]
=
N N R ~
=3Iy OQBIM; (BT Quyi (1) +x MM ' (1)]
=
N N
> 2 R, B x; (t—d(t)
=
sii[x? ORB My (Bi)TRix; () +xT (t—d (©)Mx; (t—d (1))]
-
N N
=3I (ORB My (B ) TRix; (1) +xT (t—d ()M 1, (t—d (t))]
i=1 :1
N N _
>3 2y QB x; (t—d (1)
i=1 j=1
j#i

N N o .
zz Yi (t)QiBi}(Mij(Bi}()TQiYi (t) +x] t—d@)IMjx;(t-d ()]

i=1 J:
j¢

X; (t)

(12))

(13a)

(13b)

(13c)



N - ~
=3 Iy (OQB] M(BI) TQyi (1) + X7 (t—d (1))M il (t —d (t))] (13d)
i 1

N
=1j
ji

#
According to Lemma 2 and using the idea of [9], we get

t T
_vadm GiYi (8)XyiYi(s)ds

D! T Xal [ 908 | <[ W OXay(os (14)

From (6d), (129g), (12i), (14) and Lemma 3, we have

_J-ttfpd(t) Vi ()X i + (L= )Xy = Zo7i1¥i (s)ds

$ o0 3 P8O DX + 0 X221 [0 5 t-pd )] (15)
_I::/:d(t) S;Yi (8)X5iYi(s)ds
= _%[X‘(t ~pd (©) = X (t-M ] X [x; (t—pd (©) - x (t-h)] (15b)

From (11) — (15), we obtain

V<3S 00l 000) (16)
i=1k=1
where @,®)=[4'(®) ¥ ¥ E-d®) Xt-pd®) yE-d) ¥ t-h ( :ﬁpd(t)yi(sms)T]T and matrix
IT; is defined in (7b).
Based on Leibniz-Newton formula, we get
KO -xE-pdO) =] w(s)ds=0 (17)
This means
Dy (t) =0 (18)
whereD, =[I; 0 0 -1, 0 0 —1].

From Lemma 4, it is seen that a;iT(t)Hia)i(t) < 0 is equivalent to inequality (6e). Obviously, if inequality (6e)
holds, then V (t) < 0, which ensures that system (8) is asymptotically stable [1]. It means that system (1) is

asymptotically stable, too. The proof is completed.



3. Numerical Examples
In this section, two examples are given to show the benefits of our result.
Example 1: Consider the following interconnected switched time-varying-delay system composed of two

individual switched systems:
Switched system 1 (k = 1):

. [-55 0 5 0.4 02 1 050
Xl(t){ 0 —3.3} Xl(t){ 0.1 —0.3} %(t-d(0) +{0.5 0.2} xz(t)+[0.1 o} %(t=d(®)

0 -01 -10
{_0_2 0 }Xs(t)'{o_l 0} Xs(t - d (1))

-83 0 07 0 0203 110.2
xz(o{ ) _6_3} Xz(t){_o_s_l}xz(t—d(t)){0_1 0_7} xl(t){o_3 0}x1(t—d<t»

1101 105
{0.3 0.2} %(0) +{0.7 0.1} %(t=dt)

-92 0 -11 004 010
xg(t){ . _7_2} Xs(t){o.s—s} x3(t—d(t))+L O}XZ(t){O_Z J %(t-d()

{0.1 0.5
+

01
; O_J xl(t)+[l J X (t—d(t)) (192)

Switched system 2 (k = 2):

(0= {_ 0 - 2.5} %0+ [_0(.)51 - 8.1} %(t-d) + [81 Oﬂ %0+ [o(.)z 0(.)1} %(t-d(0)

[0 8o, et

O I OR[N TR I YO IR PXCSTIO)

+ [0(',2 0?2} (0 + [0?1 Oﬂ K(t-d (D)

5= 56| %0+ 0> g xt-d) +[°(',1 091} () +[8 Oﬂ (t-d()

+{OC.)2 8} X (1) + B gﬂ X1 (t=d(t)) (19b)

Our purpose in example 1 is to find the maximum allowed delay h of d (t) satisfying d(t) < z,such that the

switching system (19) is asymptotically stable. A comparison between our Theorem 1 and the method of [10] is

shown in Table 1, which also displays the maximum allowed delay h and its time derivative g for guaranteeing
the asymptotic stability of system (19). Obviously, it can be seen that the weighting-delay-dependent stability

criterion in this paper is less conservative than one given by [10].



Table 1. Allowable delay bound h for different #

H h ([10]) h (Our Theorem 1)
0.5 Fail 6.5631
1.0 Fail 5.7382
15 Fail 4.6297
2.0 Fail 3.9156
25 Fail 2.8353

Example 2: Consider the following switched systems with time-varying delay

Switched system 1:
%(t)= [‘ 8'5 _2_5]x(t) {—0911 8;§}x(t —d(1) (20a)
Switched system 2:
X(t) = [‘ 5'2 ) (7).7}X(t) ; {8; 8?} X(t—d (1) (20b)

Our purpose in example 2 is to find the maximum allowed delay h of d(t) satisfyingd(t)gy,such that the

switching system (20) is asymptotically stable. A comparison between our Theorem 1 and the methods of [11],

[12] and [13] is shown in Table 2, which also displays the maximum allowed delay h and its time derivative
for guaranteeing the asymptotic stability of system (20). It is clear that our new method produces better results
than those in [11], [12] and [13].

Table 2. Allowable delay bound h for different #

A (h([11D)| h([22]) | h ([13]) |h (Our Theorem 1)
0.1 1.3519| 2.5381 | 3.3215 9.3129
0.3 ]0.6287 | 1.9236 | 2.6738 8.9153
0.7 | 0.4093 | 1.0153 | 1.3596 7.5816
0.9 |0.3182 | 0.6928 | 0.9361 6.6187
1.1 /0.1016 | 0.3527 | 0.5329 5.8652
4. Conclusion

A class of interconnected switched neutral-type system with time-varying delays has been investigated in this
paper. By means of an augmented Lyapunov-Krasovskii functional form combined with slack matrices, singular
model transformation technique, Finsler’s lemma and weighting-delay approach, an improved
delay-derivative-dependent stability criterion is derived in terms of matrix inequalities. Two numerical examples

are given to show the effectiveness and benefits of the proposed criterion.



(1]

(2]

(3]

[4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

42

References
Kolmanovskii, V., & Myshkis, A. (1992). Applied Theory of Functional Differential Equations. Boston,
MA: Kluwer.
Cao, Y. Y, Sun, Y. X., & Cheng, C. (1998). Delay-dependent robust stabilization of uncertain systems
with multiple state delays. IEEE Trans. Automat. Control, 43(11), 1608-1612.
Kwon, O. M., & Park, J. H. (2004). On improved delay-dependent robust control for uncertain time-delay
systems. IEEE Trans. Automat. Control, 49(11), 1991-1995.
Gu, K., Kharitonov, V. L., & Chen, J. (2003). Stability of Time-Delay Systems. Boston, MA: Birkhauser.
De Oliveira, M. C., & Skelton, R. E. (2001). Stability tests for constrained linear systems. in Perspectives
in Robust Control, S. O. Reza Moheimani (Ed.), series Lecture Notes in Control and Information Sciences
(pp. 241-257). New York: Springer-Verlag.
Fridman, E., & Shaked, U. (2002). A descriptor system approach to Heo control of linear time-delay
systems. IEEE Trans. Automat. Control, 47(2), 253-270.
Zhu, X. L., & Yang, G. H. (2008). Jensen integral inequality approach to stability analysis of
continuous-time systems with time-varying delay. IET Control Theory Appl., 2(6), 524-534.
Yang, Z., & Yang, Y. P. (2010). New delay-dependent stability analysis and synthesis of T-S fuzzy
systems with time-varying delay. Int. J. Robust Nonlinear Control, 20(3), 313-322.
Zhu, X. L., & Yang, G. H. (2010). New results of stability analysis for systems with time-varying delay.
Int. J. Robust Nonlinear Control, 20(5), 596-606.
Chiou, J. S. (2006). Stability analysis for a class of switched large-scale time-delay systems via
time-switched method. IEE Proc.-Control Theory Appl., 153(6), 684-688.
Sun, X. M., Wang, W,, Liu, G. P., & Zhao, J. (2008). Stability analysis for linear switched systems with
time-varying delay. IEEE Trans. Syst., Man, Cybern. B, Cybern., 38(2), 528-533.
Sun, Y. G, Wang, L., & Xie, G. (2009). Exponential stability of switched systems with interval
time-varying delay. IET Control Theory Appl., 3(8), 1033-1040.
Tissir, E. H. (2011). Exponential stability of switched linear systems with mixed time delays. ICIC
Express Letters, 5(7), 2101-2109.

RPSBAEAE B VA8t o Rz B AR B A A AR e B R

=
B ECR BRI A
HE
AL EAE TR IRy A 1 S U4 TP T P 20 S SEAR R AT AR MR R RE - RE IR T 0%
SUSRIBARITS ~ 3 Ar#mBl e - SRR o - s SR O BT e - S EACARSE > R R
B G BAATAR WA - AR R Z AR NIR R RIEA TR 2 IR AR BEOR i - 22

PIEEE AT T AHBCE SUREE R
BT - DA IR 24 ~ BpEEIENE  IIREAEIE )7k © o7 SV - R B R E R -



	ABSTRACT
	3. Numerical Examples

	Table 1. Allowable delay bound h for different
	Table 2. Allowable delay bound h for different

